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IRREGULAR SAMPLING, TOEPLITZ MATRICES, 
AND THE APPROXIMATION OF ENTIRE FUNCTIONS 

OF EXPONENTIAL TYPE 

KARLHEINZ GROCHENIG 

ABSTRACT. In many applications one seeks to recover an entire function of 
exponential type from its non-uniformly spaced samples. Whereas the math- 
ematical theory usually addresses the question of when such a function in 
L2(R) can be recovered, numerical methods operate with a finite-dimensional 
model. The numerical reconstruction or approximation of the original function 
amounts to the solution of a large linear system. 

We show that the solutions of a particularly efficient discrete model in which 
the data are fit by trigonometric polynomials converge to the solution of the 
original infinite-dimensional reconstruction problem. This legitimatizes the 
numerical computations and explains why the algorithms employed produce 
reasonable results. The main mathematical result is a new type of approxima- 
tion theorem for entire functions of exponential type from a finite number of 
values. From another point of view our approach provides a new method for 
proving sampling theorems. 

A standard problem in many applications requires one to find a reconstruction of 
a function f from a collection of samples f (x,). In most applications the assumption 
that f is band-limited, or equivalently that f is an entire function of exponential 
type, is well justified, and frequently the sampling points are non-uniformly spaced 
or distributed quite randomly. Then the mathematical problem is to find condi- 
tions under which f can be reconstructed completely from its samples f (x"). This 
problem is almost completely understood thanks to the work of Duffin-Schaeffer, 
Beurling, Malliavin, Landau, Pavlov and others [5, 2, 3, 12, 13, 14, 15, 17]. Their 
work has provided deep insights into sets of uniqueness, Riesz bases, and sets of sta- 
ble sampling. For reviews, more references, and different points of view of various 
aspects of the mathematical theory we refer to [1, 6, 20]. 

In recent years the attention has focussed on practical solutions of the irregular 
sampling problem. See [6, 8] and the references cited there. Here the issues are the 
design of efficient and fast algorithms, explicit error estimates and stopping criteria. 

Naturally, in any application the input for an algorithm must consist only of a 
finite number of data, in this case the samples (xj, f(xj)), j = 1, . . . , N, of a band- 
limited function. Therefore numerically one deals with a finite-dimensional version 
of the infinite-dimensional problem. 
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An algorithm for the sampling problem with input {(x;, f(xj)),j = 1,... ,N} 
can be interpreted as a sort of black box that produces some output p(x) which is 
then claimed to be the "reconstruction" of f. 

The goal of this paper is to clarify and analyze the relation between a natural 
finite-dimensional sampling model and the original infinite-dimensional sampling 
problem. In our experience the best numerical nlethod consists of fitting the samples 
f(xj) in an interval [-M, M] by a trigonometric polynomial PM of suitable degree 
and period [7, 9, 16]. Although in practice this method is very successful, it is 
not clear why PM should be a good approximation of f on [-M, M]. Our main 
result demonstrates that under appropriate conditions the alleged reconstruction 
PM converges to the original function f, as the length 2M of the interval increases. 
In this way we obtain a new theorem for the approximation of entire functions of 
exponential type from a finite number of samples. 

The proof uses only real variable estimates and resembles the finite element or 
Ritz-Galerkin methods in differential equations. The first task is to understand 
the finite-dimensional problem of irregular sampling for trigonometric polynomials 
(Section 2) and to obtain estimates that are independent of the dimension. The 
heart of our approach is the uniform estimates on the condition number of cer- 
tain Toeplitz matrices in Section 3. The other important feature is to understand 
how well entire functions can be approximated locally by trigonometric polynomials 
(Section 4). Section 5 contains the proof of the main theorem and its consequences. 
This method is of independent interest and could be useful in other contexts to ob- 
tain new sampling and approximation theorems, in particular in higher dimensions. 

1. RESULTS 

In order to formulate the results rigorously we need to describe the precise con- 
cepts and to remind the reader of the conventions adopted in this paper. 

The Fourier transform of a function f is normalized as 

(1) e() j f (x)e-2"xf dx, 

so that f(x) = fr f(()e2ix( d<. The L2-norm is denoted by If = (f If(x) 2 dx) 2. 

Our main object are entire functions of exponential type at most 7r in L2 (R), or 
equivalently the space of band-limited functions 

(2) B {f c L2(R): suppf C[-2 2} 
- 2'2 

With this normalization the cardinal series takes the form 

(3) f (x) Z f (n) 
sin 7r(x-n) for all f cB, 

with convergence in L 2(R) and uniformly on R [4], and Bernstein's inequality is 

(4) lif'II < tilf for all f c B. 

Furthermore, if f c B, then f and all its derivatives vanish at infinity. 
Any sampling sequence {xj, j C 2} IC R is ordered by magnitude, xj < xj+1, j C 

2, and limj,?O xi = ?oo. In contrast to the classical treatments, we do not 
require a minimal distance between consecutive points. 

Then the mathematical problem is to find f c B from the given sampled values 
{f(xj), j c 2}. However, in a realistic problem only samples in an interval [-M, M], 
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say, are given, and one wants to find a reasonable and computable approximation 
of f(x) on [-M, M] from the data set {f(xj), IxjI < M}. The analysis of the 
discrete irregular sampling problem [9] suggests an approximation by trigonometric 
polynomials that interpolate the data f (xj). Thus for any integer M > 0 we look 
at the class of trigonometric polynomials 

M e2rikx/(2M+l) 

(5) 'PM = {p: P(X) X,ak e /(2M + ) 1 akC}C 
k=-M 2 ? 

All polynomials in 'PM have period 2M + 1, and the normalization is taken so that 
the collection 

(6) OM,k(X) 2 v e27ikx/(2M+l), k c Z 

is an orthonormal basis of L2 ( [-M - M + 21). In particular, we have 
11 1 

(7) JP 12,M: (j l~P(X)12 dX) 1aJ2 (zak 2> 
2 ) kEZ ) 

(8) IIPII < JJPI12,M and IIP ||2,M <? 7llPll2,M. 

In the following we will write IM for the interval [-M - , M + 2j, ( .)M and 
11 2,M for the inner product and the norm in L2(IM). As in (7), finite sequences 
are always extended by zeros to sequences in 12(z) with unambiguous norm 11 112 

Considering p C 'PM as a periodic tempered distribution on R, its Fourier trans- 
form is EP = M ak&k/M and supp P C [-2 2. In view of the bandwidth of 
f c B it is therefore natural to consider the trigonometric polynomials of period 
2M + 1 and order M for the purpose of a local approximation of f. 

To avoid boundary effects, we take all samples in IM and additionally the two 
adjacent samples. More formally, let 

(9) K(M) = max{j: xj <-M--} and L(M) = min{j: xj > M +}; 
2 2 

then 

(10) JM = [K(M), L(M)] n z. 

Theorem 1. Suppose that the sampling set satisfies 

(11) sup(xj+j - xj) = 6 < 1 
jCz 

and that {f (xj), j c 2} is given for some f c B. If PM denotes the unique trigono- 
metric polynomial in 'PM that solves the least squares problem 

(LSP) 
I 
PM(Xj)Vf(Xj) 12 Xi+1-Xi minimum, 2 

jcJM 

where the minimum is taken over all p C 1PA'I , then 

lim j ft(x) - PM)()2d 
2 

for all derivatives f > 0, and also limMO,0pM(x) = f(x) uniformly on compact 
sets. 
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In the next section we will see that the least squares problem (LSP) can be 
solved efficiently by the inversion of a Toeplitz matrix. At present the fastest 
and most accurate reconstruction algorithms for the irregular sampling problem of 
band-limited functions are based on the solution of (LSP) [7]. 

As a consequence of the proof we obtain the following sampling theorem for 
band-limited functions [8]. 

Corollary 1. If supjz(x+j - Xj) = 6 < 1, then for f C B 

(I _ 65)211f 112 < E If (Xj)12 xj+1 - xj-1- < 41f 112. 
jCz 

We refer to the review [6] for a discussion of this sampling theorem. While the 
assumption on the sampling set is somewhat restrictive, this is the only sampling 
theorem known to us with explicit constants. These constants provide an esti- 
mate for the condition number of the sampling problem, and determine the rate of 
convergence of iterative algorithms. 

In the special case of regular sampling at the Nyquist rate the approximating 
polynomials can be written explicitly and computed easily. Then one obtains the 
following approximation theorem: 

Corollary 2. Suppose that {f(j), j c 2} are the samples of f c B . Define 

PM(X)- 1 M_ X, j sin ir(x - j) PM() 
2M 1 S fCU) sinr(X-j) j=-M si 2M+1 

Then limM,O fXI<M+ 1 If(t)(x) - PM(X) J2 dx = 0 for all f > 0. 

Diligent book-keeping of all estimates in the proof of Theorem 1 permits a more 
quantitative statement and shows that the approximation quality depends on the 
decay of f at infinity. 

Corollary 3. With the same assumptions as in Theorem 1 and 0 < L < M we 
have 

<M1If (x) - PM(X) 12 dx 
Ixj<M+12 

?(1 &) 2{MLlfl + 2 (J L(f(x)2? f/(x)2)d 1/2 

+ sup If(?X)12 + If2(?X)12 
Ix-M-1 1<1 / 

where the constant C does not depend on f, 6, L, or M. In particular, if f C B is 
rapidly decreasing, then lf-PMII2 M = O(M-2+E) for all c > 0. 

2. IRREGULAR SAMPLING OF TRIGONOMETRIC POLYNOMIALS 

To understand Theorem 1 we must first analyze the least squares problem (LSP) 
and find a solution method for any integer M > 0. In view of our ultimate goal 
{ xj, j c 2} is always a bi-infinite sequence, of which we consider only the samples 
in__ C [- - 1 1 M + 1] 
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We start with two simple observations. 
1. If PM El k aM(k)qM,k C PM and wj > 0 is a sequence of weights, then 

M M 

3 IPM(Xj)I 2Wj = ? Y aM(k)aM(l) WS e-27i(1-k)xj/(2M+l) Ipm(x) 
' 

3 E 2M ?1 
jcJM k=-M k=-M jCJM 

Let Cm denote the (2M + 1) x (2M + 1) positive semi-definite Toeplitz matrix with 
entries 

(12) (CM)kl 
j2M 

e 

27i(k-l)xj/(2M+1) 

for k 

1 

< M 

j E JM 

If the number of samples card JM exceeds 2M + 1, then the evaluation map 
PM --+{p(Xj), j C JM} is one-to-one and the coefficient vector aM C C2M+1 is 
uniquely determined. In this case CM is invertible. 

2. Given PM C PM with coefficients aM(k), the vector CMaM E C2M+1 contains 
only the samples PM(xj), as is seen from the calculation 

M 

(Cmam)(k) = , , am(l) j e -27ri(k-1)xj/(2M+1) 

I=-MjcJM 

E PM(Xj) Wj e-2 ikxj/(2M+1) 

jcJM 2M?I 
These remarks lead to the following algorithm for the solution of (LSP). 

Proposition 1 (An efficient algorithm). Let {(xj, f (xj)),j Ec JM} be the given in- 
put, wj > 0, j c 2, a set of weights, and suppose card JM > 2M + 1. 

Step 1. Compute bM c C2M+1, where 

(14) bm (k) = f(xj) W e-27rikxj/(2M+l) for k KM 
jcjm v2M?1 

Step 2. Compute aM= C711 bM C C2M+l. 

Step 3. Compute 
M e27ikx/(2M+1) 

(15) PM (x) E am(k) M()1 M 

Then for all p C PM,P =A PM, 

Z IPM(Xj) -f (Xj) 2wj < E P(Xj) -f (Xj)1 Wj. 
jcJM jcJM 

Proof. We consider the subspace { (p(xj)jEEjm J p C PMm} C CJM with the inner 
product (a, b)w = EjcJM aj b wj for a, b c CJM. 

The solution of (LSP) is the orthogonal projection of the vector {f (x;), 
C JM} C CJm onto this subspace, and therefore it is sufficient to verify that 

Z (PM(Xj) - f(xj)) qM(xj)wj = 0 
jcJM 
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for every qM C PM with coefficient vector CM C C2M+1. But this is clear, since by 
(13) and Step 2 

S PM(xj)qM(xj)wj = (CMaM, CM) = (bM, cM). 

On the other hand, 

E f(xj) qM(xj) wj 

M 

S CM (k) 5 f (xj) 
j e-2ikxj/(2M+l) = (bm cm). 

k=-M jcjm v2M?1 

Remarks. 1. All steps of this algorithm can be implemented efficiently and com- 
puted quickly. Step 3 is just a discrete Fourier transform, and often Step 1 can also 
be computed with a fast Fourier transform. The computation of the entries of the 
Toeplitz matrix CM and its inversion can also be carried out by using a fast Fourier 
transform and preconditioning, and requires about O (2M log 2M) operations. For 
a detailed discussion of this algorithm and a more organic derivation, as well as 
numerical simulations, we refer to [7]. Some spectacular applications are contained 
in Strohmer's thesis [18]. 

2. An alternative method to solve (LSP) has been proposed by Reichel, Ammar, 
and Gragg [16] and is based on unitary Hessenberg matrices and Szego polynomials. 
Both methods seem to be equally efficient and require about (0(2M- card JM) 
operations. For the theoretical discussion the transformation into a Toeplitz system 
is preferable, as will become clear in the following developments. 

3. A UNIFORM ESTIMATE OF THE CONDITION NUMBER 

The algorithm of Proposition 1 solves the least squares problem (LSP) for any 
choice of weights and for an arbitrary distribution of sampling points provided that 
[-M - , M + 21] contains at least 2M +1 samples. However, if card JM 2M +1 
and if the sampling set contains large gaps, then the matrix of the problem is 
frequently very ill-conditioned [6]. This can be avoided by the appropriate choice 
of weights and by imposing the maximal gap condition (11). 

Lemma 1. Let {cxj,j C 2} C R be an arbitrary sampling sequence and 6 > 0. 
Define the weights wj > 0 by 

(16) 

wj min (2(j + Xj+0 I X + 2)max (2(j + xj-1))j-2) 

If f is continuously differentiable and K < L C 2, then 

(17) E f(Xj) 2Wj < 2 jL^ (If(X)1 +2 
6 

f'(X)12 dx. 
j=K2 

Proof. Let yj = max ((xj + Xj1), - ) and zj min ( 2 (xj + Xj+), Xj + ), 
and let Xj be the characteristic function of the interval [yj, zj] containing xj. Then 
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z- yj < 6 and 

L L 

(18) Z1 E f(xj)xj 11 E If(xj) 2wj 
j=K j=K 

We shall prove that 
L 62 L 

(19) Z1 
E (f - f(xj))x 2 62 1L E f -Xi 11 
j=K j=K 

then (17) follows with the triangle inequality. Next we write 

L L zj 
LE (f _ f(Xj))Xj|2 = E If(X) - f(Xj)12 dx. 
j=K j=K Yi 

To each term we apply Wirtinger's inequality [11] in the form 

jb f(_)-f(C)12 <- max ((b-c)2, (c-a)2) jb If(X)12 dx. 

Since by definition zj - xj < 1/2 and xj - yj < 6/2, we obtain 

(20) 

E If f(X) - f(Xj) 2 dx < E F2 
1 
f '(x) 2dx < 2 j If(X) 2 dx, 

j=K Yj j=K Yj YK 

from which (19) and thus (17) follow. 

Corollary 4 ([9]). Let -M-2 < xi < **. < Xr < M+ and set xo = xr-2M-1 
and Xr+l x, + 2M + 1. If maxj=,...,r(xj+l - xj) = 6 < 1, then for all p c PM 

r 

(21) (1-6) IIPII2 ,M 
< S p(X)2 <i+I Xj_ < (1 ? 6)2 11 12 

j=1 

Proof. In this case Yj+l = zj and E r X[yi,yi+2M+1] The periodicity of p, 

(18), (20), and Bernstein's inequality imply 

(JYl+2M+1 
r Z\ 8/ 

l p(X) Ep(Xj)Xj1(x)1 dx, < -?IIPI112,M ?< 11PI12,M- 

Now (21) follows with the triangle inequality. g 

Next we apply the corollary to segments of an infinite sampling sequence in order 
to derive estimates for the condition number of CM. The following proposition is 
the key to understanding Theorem 1. 

Proposition 2. Suppose supjEz(xj+l - xj) = 6 < 1 and CM has the entries 

(CM) kl 

j+1 -X 

e-27ri(k-1)xj/(2M+l) 

for lk 

K 

III < 

M. 

Then for all aM C C2M+1 we have 

(22) (1 -8)2 |aM| 2< (OMaM, aM) < 6 |aM| 
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In particular, the estimates 

(23) JjCMjj,p <6 and 2C11|P < (1- _6)2 

for the operator norm of CM are independent of the dimension M. 

Proof. In view of (13) the assertion is equivalept to the inequalities 
r 

(I1_-6)2 2 < E lP(Xj)12 Xj+l Xi-' < 611p112 
11PI12,M-L -kI 2 2- 

j=1 

for all p C 'PM. Since p is (2M + 1)-periodic, we can consider the points XK(M) + 
2M + EC [-M-2, M+2] = IM and XL(M)-2M-1 C IM instead of XK(M) and 
XL(M), which were defined in (9). Rearranging the new set of points by magnitude 
and relabeling them, we obtain a new sequence (;j) C IM. This sequence coincides 
with the original segment {xj,j C JM} except for two points. The new sequence 
satisfies xj+1 - j < 6 (it is exactly for this reason that the two points outside IM 
are included) and uj+j - xj_1 < xj+l - xj-l < 6, since we have added points to 

IM With the estimates of Corollary 4 we obtain 

(1 6)2 IIPII2M < E jp(j)12 Xj+1 -Xj_1 

2 
i 

2 2 IP(X 2 62 P(XL(M) ) 

j 
<(1 + 6)2 1PI 2,M +621 1p2 

Since 6 < 1 and IIPIIOO < I_ P12,M, the proposition is proved. g 

Lemma 2. Suppose that {xj, j C 2} is a sampling sequence with associated weights 

wj > 0, so that for some constant /3> 0 

(24) CM IO? <3 uniformly for all M > 0. 

Let eM,j C (C2M+1 for j C JM be the vector defined by 

eM,j(k) = em 2irikxj/(2M+1) for kl < M. 
2M 

Then the following inequalities hold for all g C C2M+1 and all (aj)jEJM C CJM: 

1(g,eM,j) 2 < 11g112 and E a 1eM 2 < /311a 12 

jCJM jCJM 

Proof. Here (g, h) = Ek=M -g(k)h(1k) is the standard inner product in C2M+1. 
Therefore 

M M 

5 1(g,eM,j) 
2 5 5 g(l)g(k) E eM,j(l)eM,j(k) 

jCJM k=-M l=-M jCJm 

M M 5 5 9g(l)g(k) 5 2M+ e 21ri(k-1)xj/(2M+l) (Cm 9,9) 

k=-M 1=-M JCJM 
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and 

(CMg,g) C< 1 gCf1logl2 < MIMI. 
The second inequality follows by duality: 

11 E ajeM,j 2= SUp aj(eM,j,)2 
jcJM 119112=1i E JM 

< laj12) sup S (eM,j,jg)2 < lla 112. SUp||9||2 = lla 12 

jcJM 119112=1 jcJM 9 

4. ESTIMATES FOR PROJECTION OPERATORS 

Let P be the orthogonal projection from L2(R) onto B, and PM the orthogonal 
projection onto the (2M + 1)-dimensional space 'PM spanned by the exponentials 

OM,k(Xl)= +li for kl < M. 

Since the least squares problem (LSP) approximates the original function f by a 
trigonometric polynomial PM C 'PM on IMA, we need some information on how and 
in what sense PM/ approximates P. 

P is given by the integral operator 

(25) Pf (Xy) sin 7r (x-y) dy. 

On the other hand, since qM,k is an orthonormal set in L2(IM), 

M 
PMf (x) E (f, qM,k)MOM,k(X) 

k=-M 

I M~~~-A 

(26) f 2M I J () E e2 ik(xY)/(2M+ )) dy 
2M+I 'M \k=-MI 

fM f ( in(xy dy. 
J-LX M- Y)(2M+ 1) sin 7(x-y)y 

Let 

(27) KM(x) = (2M + 1)/2 qM,k(X) =(2M 1) sin xx 
k==-M ~ ~ ~ (2 1 sn2M?1 

be the convolution kernel of PM. Then 

(28) |lKM 12,M = 1 and IKM(x)I < 1 for all x. 

Since KM (x) converges uniformly to sin 7rx and since P and PM are orthogonal 
projections, a standard argument shows that limMO,0 XIM PMf = Pf in L2(R) 
and uniformly on compact sets. However, since the kernels are given explicitly, we 
can do a little better and derive a quantitative estimate. 

Lemma 3. For every f C B and 0 < L < M we have 

f-PMf ,M?cf ( f2 lf (f + ( )2dy)) 
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for a constant c > 0. In particular, limM,0 lf - PMf ll2M = 0. Furthermore, 
limMO,o PMf(x) = f(x) uniformly on compact sets. 

Proof. Since f = Pf and since PM is an orthogonal projection on L2 (IM), we can 
write 

(29) lif 
- PMf 2,M = (f, Pf)M - (f, PMf)M = (f, (P - PM)f)M- 

Now fix L,0 < L < M, and XL = X[-L,L], and insert the identity f = fXL + 

f(1 - XL) into (29). Then 

(30) 2f-PMfH|,M = (f(1 - XL), (P - PM)f)M 

+(fXL, (P - PM)(f - fXL))M + (fXL, (P - PM)(fXL))M = I + II + III. 

For the first term we obtain 

I I fI<If(1-XL) II2M( IPf |2,M? +|PMfI 2,M) <2 | ( Y) dy) 

Similarly, 

III < 2 lf 1 (L If(y)12dy ) 

In the third term we estimate the difference of the integral kernels for small values 
of x and y: 

si|r -Km (x) |= |Km( (x Fsi )Il 

sin 2Ix _ ___ 2 

(31) < 2M| 
1 I 

I 

since IIKM!!OO < 1. Therefore 

II= |JXIL JyL f(x)f(y) (n(x)Y)-KM(x-Y)) dxdy 

xl<L jIy L JyI?L (x )fy y) 

3(2M ? 1)2 f (X)()I(X _ y)2 dx dy 
- 

(JM ?L JIyIx?L -y/3lM?1) 

<(2M Il1) 112 f(x y)4 dx dy~ < 7 
(2L) 3 11f112 - 

(2 + 1)2 xJl<L yl<L( -)dd8 3(2M ) 1(2L)lf 

Combining these estimates yields, for any 0 < L < M, 

lf - PMf12,M < clifH M2 lf1 + (J I dy) ) 

for the constant c = max(27r2/3,4). Choosing L = Mc, 0 < a < 2/3, yields 
limMOO ||fO-PMH,2M = 0. 

The argument for uniform convergence on compact sets is similar and is left to 
the reader. - 

We need one more property of the projections PM. 
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Lemma 4. (a) For any differentiable function f we have 

(PMf)'(x) = PMf'(x) -f (M + -f (-M - KM(x + M +) 
2-2 2 

(b) If 0 < L < M/2 and f C L2(R), then 

sup IPMf(?x)12 < L2 I + Iff(y)12dy. 
Ix-M-2 I<1 M 

yl>L 

Proof. (a) follows from the computation 

(PMf)'(x) j f(y) KM(x - y) dy - d (y) Km(x-y)dy 
M-1 dx m_ 1 d~~fy)~K ( )d 

M+ 1M+ 1 

IM1 f'(y)KM(x - y) dy - f (y)KM(x - y) 
JM2 y=M2 

=PMf'(x)- (f(M+ ?)KM(x-M- )-f (-M-2)KM(x + M +) 

For (b) we write 

M+ 1 

PM f(?X) 2 = f (y)KM(?x - y) dy12 
-M-1 2 

< If(y)12dy KM(?x - y)12 dy 
IYl:<L IYIl<L 

+ f (y) 12 dy / IKM(?x-Y)12 dy. 
JIylI> L J < IyI< M+ 12 

We take into account that for x = M + 2 + ( and I41 < 1 

1 K (? _ )1 = Km( +1?~Y1 CoSi7r( y) 1< 2 
2 (2M + 1) cos r(?-j ) - (2M +1)2' 

provided that 2M1?yI < 7(L+1) < r/4. Altogether we obtain 

sup IPMf(?x)1 < (2M< 1)2L lf 12 +J (y)1 dy. 
Ix--1<1 (M+) 

5. PROOF OF THE MAIN THEOREM 

We are now in a position to prove Theorem 1 and its consequences. 
Recall that from the samples f (xj) of f E B we construct a trigonometric polyno- 

mial PM = EZ M aM(k)q$M,k E PM that approximates the samples in [-M, M] 
optimally. The solution of the associated least square problem required the inver- 
sion of the system's Toeplitz matrix CM. 

The proof that PM converges to f does not depend on the particular assumptions 
on the sampling set. All that is required are the uniform bounds on the condition 
numbers of CM established in Proposition 2. We state this as a separate theorem, 
since this type of conclusion could be useful in other situations. 
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Theorem 2. Suppose that {xj, j E Z} is a sampling sequence with associated 
weights chosen as in (16), f E B and that for any M E Z, M > 0, PM E 'PM is the 
solution of the least squares problem (LSP). If there exist constants 0 < a < 3, so 
that the spectrum of CM satisfies 

(32) o(CM) C [a, 3] uniformly for all M > 0, 

then limMO,0 PM (x) = f (x) converges uniformly on compact sets and 

lim f( () -(PM(X) dx= O 
M-*oO J - 

2 

for all i > 0. Furthermore, 

(33) allf 112 < S If(Xj) 2Wj < 41fH2 
jeC 

According to Proposition 2, the hypothesis (11) on the maximal gap implies 
J(CM) C [(1 - 6)2, 6]. Therefore, Theorem 1 and Corollary 1 are immediate conse- 
quences of Theorem 2. 

Proof. Step 1. In order to compute 

rM+ 2 
J If(X) -pM(X)12 dx 

-M-2 2 

we expand fM := f * XIM into a Fourier series 

fM = EfM(k)$M,k for |x| < M+ 
kc7L 

where fM(k) = (f, qM,k)M. Then f - PMf = EIkI>M fM(k)qM,k is orthogonal to 

PM in L2(IM), and we can write 

(34) Hf PM 12,M = -PMf12,M + HPMf -PM 112,M = RM + AM 

The remainder RM tends to zero by Lemma 3. 

Step 2. The estimate for AM is harder and makes fundamental use of the lower 
bound on CM . By slight abuse of notation we still denote the vector {fM(k), lkl < 
M} by IM E C2M+1. Since by construction (Proposition 1) pM(k) = aM(k) = 

(CMlbM))(k) for jkl < M, and PM(k) = 0 otherwise, we obtain 

AM = |PMf _PMII2,M 
H IfM -aMH12 = HICK (CMIM -bM)|12 

(35) < ? 
- 

211CMfM - bM|12 
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Because CM and bM are known explicitly, we can rewrite this expression and ma- 
nipulate it so that Lemma 2 is applicable: 

M M 2 

||CMIM -bM2 = S S (CM)klfM(l) - bM(k) 
k=-M l=-M 

M M 

E | E E 2 j 
e 27ri(k-1)xj/(2M+l)fm(I) 

k=-M l=-MjCe JM 

2 
- EI UW f(xj)e-2rikxj/(2M+l) 

{ f(xi) M 
M } 

k=-M ;CJM - +/ 1 l=-M Z/(M1)MI) 

?iE E f(x x) - e22ilxi rilxj/(2M+l) 2 

1 =M M 

2M+1 E e27ilxi/(2M?l)fM(l) = S (f, fM,l)MXM,l(XJ) = PMf2(x2 ) 

leads to the estimate 

(36) AM?4 < S2 WJ f(xj)-PMf (Xj) 

Step 3. We apply Lemma 1 with a = 1 to hM = fi-aPMf and obtain 

E WJ2hM(lxj) ? 2jl (|hM(x)f2 +i 2hm(x)2) dx 

J2IM +JM 1 <mIxI <M 

Here f3 6 f- = o(1) by Lemma 3. For fIM fh2 we use Lemma 4 and 

obtain 

(37) 

- PMf)lI2M < 2lfl - PMf12M + 2 f(-M--)-f(M + !X ) 21K21M 

which also converges to zero by Lemma 3. 

Step 4. The rest is estimated coarsely by taking suprema: 

JIm<xjM2 ( hhM(x)m2x+ -h()l2) dx K 2 su (fx)M2 2 M 

ws,~~~~~~~~ 1 <II <M+s 3 
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Since f E B, all terms under the supremum tend to zero, where we have to use 
Lemma 4 to handle PMf and (PM f)'. 

Combining these estimates, we have proved so far that f'?mf1 If(x) - PM (X) 2 

tends to zero, as M -* oo. 

Step 5. Pointwise convergence. We return to the beginning of the proof and 
write 

If (x) -PM (X)< f (x) - PMf (X) + PM f(x) -PM(X)I 

1 M 

=I f (X) -PM f (x) I + | wTE (fM (k) -am (k) )e 2Irk/(Ml 

/M\ 1/2 

f ' If (x) -+ f M+ S (fM(k) -am(k) 
k=-M 

The first term converges to zero uniformly on compact sets by Lemma 3, whereas 
the second term does not depend on x and converges to zero by steps 1-4. 

Step 6. Convergence of the derivatives. Again we write for i > 1, as in (34), 

HIf -P 12,M = Hlf(e) _PMf () 112,M + IlPMf -P 112M. 

Since f(e) E B, the first term converges to zero by Lemma 3. Iterating the formula 
in Lemma 4 (a), we obtain 

(PMf)(e)(X) - PMf() )(X) + E (f( )(M +-2)-f(k)(-M- 2))KM(M + + x). 

k=O ~ ~ ~ k= 

Therefore, using (28) and Bernstein's inequality 

/ 1~~~~~~~~~~~~- 1 
|IPM f PM lP 1 2,M 2(1(M 

1 
(p ) -M 1 f()(M k)(_M-1 ) )12) 

? 2(7r PMf - PM f,M + _(I)1M + I) - f(k)(M M _f )) 9 

Using Lemma 3 and f E B again, the convergence of the derivatives is verified. 

Step 7. Norm equivalence. The upper bound in (33) is a consequence of the 
particular choice of the weights Wj and follows easily from Lemma 1 with 8 = 1: 

5 f(X)12Wj ? 2J (2f(x)2 2 ? -! 1if(X)12) dx 

JCJM 2~~~~~~~~~~~~~~~~~~~ 

< 2(_fM112 + - (kf'2) < HfHf2 VM > 0. 

For the lower bound we show first that 

(38) lim 1 (xJ) -PM(Xj)| 12 = 1O. 
i E JM 
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As in Step 3 we estimate 

M+?3 

S f[(xJ) -pM(x)I2w fM4< ,/ ([fM2 2 12) j C~ ~~W 

< lf _-PM H12,M + Hlf -PIH 2,M 

+ sup __ (?X)12 + f'(?X)12 + IPM(?X)1 + I 
( X)1) 

i-M-2I 1<1 

In view of the preceding steps we only have to treat the suprema over PM and p/M. 
Because of 

IPM(X)I < ?PM(X) - PMf(X)| + |PMf (X) < IIPM - PMfH12,M + |PM f(X)L 

Lemma 4 and Steps 1-4 yield 

lim sup IPM(X)12 = 0. 
M-*11 

Ix-M- I1<1 

The supremum of p/M is treated in a similar fashion. 
Now, given any E > 0, choose M large enough so that If -PM H2,M <M C 2lif I, 

ZjCJM f[(Xj) - PM(XJ) 2wj K c2H1fH2 and HlfH1 - HlfH12,M < cEa- IlfH1. Then 

If(Xj)12Wj ' (> If)(Xj)12Wj 

> ( IPM(Xj)12Wj) - ( I 
f(X) PM (Xj)W12W) 

JCJM JCJM 

? VIIPMII2,M - ElHf H ? Valf12M - IIPM -fH12M) -Elf l 

? a(HlfH _ -a lHfH1 -a -2 lfH1) -cHff = (Va- 3c)Hlf. 

This completes the proof of Theorem 2. D 

Proof of Corollary 2. The given polynomial actually interpolates the given data 
{f(j), ljI < M}. In this case the system matrix CM is the (2M + 1) x (2M + 1) 
identity matrix, as is seen from 

M 

(CM)kl = 1 e-27i(k-l)j/(2M+l) = 6kl 

j=-M 

Thus Theorem 2 is applicable. D 

Proof of Corollary 3. The main contributions to the error lf -PMII2,M are the 
terms 

1f - PMf 112,Mi 

SUp (If(?x)12 + IfI(?X)12), 
Ix-M- 1<1 

and 
sup (IPMf(?X) 1 + |(PMf)'(?x)1, 

Ix-M-I 1<1 
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as follows from (34), (36) and (37). The estimate of the corollary follows from 
Lemmas 3 and 4. The maximal gap condition yields the condition number of order 
(1 _ 6)-2 (Proposition 2). D 

6. CONCLUSION 

Theorem 2 provides a natural strategy to prove theorems about the approxima- 
tion and reconstruction of entire functions of exponential type. It reduces these 
questions to a finite-dimensional problem about the spectrum of certain Toeplitz 
matrices and the sampling of trigonometric polynomials. The method outlined 
in Theorem 2 could provide a new proof of the theorems of Duffin-Schaeffer [5] 
and Beurling-Landau [2, 13], with the additional benefit of an explicit and efficient 
numerical algorithm attached to the proof. 

Let d(X) = limMOO0 2M minr>o ZjEiZ X[r-M,r+M] (Xj) denote the Beurling den- 
sity of a sampling set X = {xj, j E Z}. Then Beurling's theorem states that if 
d(X) > 1, then an inequality of the form (33) holds. Conversely, if (33) holds for 
some sampling set X, then d(X) > 1. 

The condition d(X) > 1 implies that for large M every interval of length 2M 
contains at least [2Md(X)] > 2M +1 samples. Thus, as in Proposition 1 the system 
matrix CM is invertible, the least squares problem (LSP) has a unique solution. 
In view of Theorem 2 it is therefore plausible to conjecture that the hypothesis 
d(X) > 1 implies uniform estimates on the condition number of CM. We hope to 
return to this question. 

Theorem 2 and its proof carry over to higher dimensions with only minor mod- 
ifications in the notation [10]. Theorem 2 allows us to reduce the sampling prob- 
lem for multivariate band-limited functions to a finite-dimensional problem about 
trigonometric polynomials, and thus offers a new strategy for establishing irreg- 
ular sampling theorems in higher dimensions as well as corresponding numerical 
algorithms. 
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